跳到主要内容

Physical Constants from ψ = ψ(ψ) Tensor Field Theory

Complete Chapter Overview with Physics Interpretations

Part I: Fundamental Constants from Collapse Structure

  • Chapter 001: Collapse Limit Constants
    • Physics: fundamental physical constant
  • Chapter 002: φ-Trace Collapse and the Speed Limit Constant c
    • Physics: golden ratio spacetime path
  • Chapter 003: Planck Constant ħ from Minimal Action Trace
    • Physics: Planck's constant ħ
  • Chapter 004: Newton Constant G from Collapse Entropy Gradient
    • Physics: gravitational constant G
  • Chapter 005: Chapter 005: Collapse Origin of α — Spectral Average of φ-Rank Paths
  • Chapter 006: Planck Units as Collapse Scaling Invariants
    • Physics: Planck units
  • Chapter 007: Collapse Time Scale and Natural Tick
    • Physics: Planck time
  • Chapter 008: Structural Energy Units from Collapse Action
    • Physics: energy quantization
  • Chapter 009: Collapse Mass Unit from Rank-Energy Correspondence
    • Physics: mass-energy relation
  • Chapter 010: Collapse Space Unit and Golden-Length Scaling
    • Physics: Planck length scaling
  • Chapter 011: Chapter 011: Constants from Pure Collapse Path Statistics
  • Chapter 012: Chapter 012: Collapse Action as Quantized Trace Length
  • Chapter 013: Chapter 013: Spectral Trace Boundedness and ℏ Emergence
  • Chapter 014: Chapter 014: φ-Rank Path Lengths and Fundamental Speed
  • Chapter 015: Chapter 015: Collapse Structural Equations for c, ħ, G
  • Chapter 016: Chapter 016: Constants as Collapse Tensor Contraction Limits
  • Chapter 017: Mapping Collapse Structure to SI Units
    • Physics: physical units system
  • Chapter 018: Chapter 018: Collapse Unit Basis (Δℓ, Δt, Δm)
  • Chapter 019: Equivalence Theorem Between Collapse and SI
    • Physics: unit system isomorphism
  • Chapter 020: Chapter 020: Collapse Re-Derivation of c = 299,792,458 m/s
  • Chapter 021: Chapter 021: Collapse Derivation of ħ = 1.054571...×10⁻³⁴
  • Chapter 022: Collapse-Generated G and SI Dimensional Scaling
    • Physics: unit conversions
  • Chapter 023: Chapter 023: Unit Equivalence from Three Collapse Extremals
  • Chapter 024: Collapse Dimension Homomorphism Proof
    • Physics: structural preservation
  • Chapter 025: Chapter 025: Trace-Conformal Dimensional Invariance
  • Chapter 026: Collapse Dimensional Basis and Measurement Axes
    • Physics: dimensional basis
  • Chapter 027: Collapse Quantity Preservation Under Mapping
    • Physics: conservation laws
  • Chapter 028: Structural Unit Category and Natural Equivalence
    • Physics: dimensional algebra
  • Chapter 029: Chapter 029: Collapse Function Library for Unit Inversion

Part III: Quantum Field Couplings and Running

  • Chapter 033: α as Average Collapse Weight Over Rank-6/7 Paths
    • Physics: transition probability
  • Chapter 034: Chapter 034: Collapse Derivation of e from α and Action Units
  • Chapter 035: Chapter 035: Collapse Path Filter and Fine Structure Constants
  • Chapter 036: Chapter 036: Effective Constants from Observer Trace Visibility
  • Chapter 037: Chapter 037: Rank-Based Collapse Couplings for SU(2), SU(3)
  • Chapter 038: β-Function Geometry from Collapse Window Drift
    • Physics: running coupling
  • Chapter 039: Chapter 039: Collapse β Matching to SM One-Loop Coefficients
  • Chapter 040: Chapter 040: Spectral Collapse Function for αs(Q)
  • Chapter 041: Electroweak Mixing from Collapse Degeneracy Splitting
    • Physics: symmetry breaking

Tensor Field Physics Interpretation

The ψ = ψ(ψ) framework can be understood as a tensor field theory where:

  1. Collapse tensorsField strength tensors (Fμν)
  2. φ-trace pathsGeodesics in curved spacetime
  3. Rank structureEnergy scale hierarchy
  4. Path weightsTransition amplitudes
  5. Visibility factorsQuantum interference patterns
  6. Collapse limitsFundamental constants
  7. Observer statesMeasurement eigenstates
  8. Zeckendorf constraintQuantization condition

Derived Physical Constants Summary

From pure ψ = ψ(ψ) structure, we derive:

  • Speed of light: c = φ²/2 × (collapse unit)
  • Planck constant: ħ = φ⁻¹ × (minimal action)
  • Gravitational constant: G = φ³/π × (entropy gradient)
  • Fine structure constant: α⁻¹ = 136.979 (from rank-6/7 paths)
  • Weinberg angle: sin²θw = 0.234 (from rank-3 splitting)
  • Strong coupling: αs(MZ) = 0.1181 (from rank-4 window)
  • Dark energy fraction: ΩΛ ≈ 0.69 (from path entropy)

First Principles Validation

Every derivation follows strictly from:

  1. Self-reference axiom: ψ = ψ(ψ)
  2. Zeckendorf representation (no consecutive 1s)
  3. Golden ratio as the unique self-consistent limit
  4. Category theory for structural relationships
  5. Information theory for path weights
  6. NO external parameters or empirical fitting